3.3.69 \(\int \frac {x^5}{(a+b x^3) (c+d x^3)^{3/2}} \, dx\)

Optimal. Leaf size=82 \[ \frac {2 a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 \sqrt {b} (b c-a d)^{3/2}}-\frac {2 c}{3 d \sqrt {c+d x^3} (b c-a d)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {446, 78, 63, 208} \begin {gather*} \frac {2 a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 \sqrt {b} (b c-a d)^{3/2}}-\frac {2 c}{3 d \sqrt {c+d x^3} (b c-a d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^5/((a + b*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

(-2*c)/(3*d*(b*c - a*d)*Sqrt[c + d*x^3]) + (2*a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*Sqrt[b]
*(b*c - a*d)^(3/2))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^5}{\left (a+b x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {x}{(a+b x) (c+d x)^{3/2}} \, dx,x,x^3\right )\\ &=-\frac {2 c}{3 d (b c-a d) \sqrt {c+d x^3}}-\frac {a \operatorname {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )}{3 (b c-a d)}\\ &=-\frac {2 c}{3 d (b c-a d) \sqrt {c+d x^3}}-\frac {(2 a) \operatorname {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{3 d (b c-a d)}\\ &=-\frac {2 c}{3 d (b c-a d) \sqrt {c+d x^3}}+\frac {2 a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 \sqrt {b} (b c-a d)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 88, normalized size = 1.07 \begin {gather*} \frac {2 \left (\frac {c (a d-b c)}{d \sqrt {c+d x^3}}+\frac {a \sqrt {b c-a d} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{\sqrt {b}}\right )}{3 (b c-a d)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^5/((a + b*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

(2*((c*(-(b*c) + a*d))/(d*Sqrt[c + d*x^3]) + (a*Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a
*d]])/Sqrt[b]))/(3*(b*c - a*d)^2)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.15, size = 92, normalized size = 1.12 \begin {gather*} \frac {2 c}{3 d \sqrt {c+d x^3} (a d-b c)}-\frac {2 a \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3} \sqrt {a d-b c}}{b c-a d}\right )}{3 \sqrt {b} (a d-b c)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^5/((a + b*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

(2*c)/(3*d*(-(b*c) + a*d)*Sqrt[c + d*x^3]) - (2*a*ArcTan[(Sqrt[b]*Sqrt[-(b*c) + a*d]*Sqrt[c + d*x^3])/(b*c - a
*d)])/(3*Sqrt[b]*(-(b*c) + a*d)^(3/2))

________________________________________________________________________________________

fricas [B]  time = 0.81, size = 326, normalized size = 3.98 \begin {gather*} \left [-\frac {{\left (a d^{2} x^{3} + a c d\right )} \sqrt {b^{2} c - a b d} \log \left (\frac {b d x^{3} + 2 \, b c - a d - 2 \, \sqrt {d x^{3} + c} \sqrt {b^{2} c - a b d}}{b x^{3} + a}\right ) + 2 \, {\left (b^{2} c^{2} - a b c d\right )} \sqrt {d x^{3} + c}}{3 \, {\left (b^{3} c^{3} d - 2 \, a b^{2} c^{2} d^{2} + a^{2} b c d^{3} + {\left (b^{3} c^{2} d^{2} - 2 \, a b^{2} c d^{3} + a^{2} b d^{4}\right )} x^{3}\right )}}, -\frac {2 \, {\left ({\left (a d^{2} x^{3} + a c d\right )} \sqrt {-b^{2} c + a b d} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-b^{2} c + a b d}}{b d x^{3} + b c}\right ) + {\left (b^{2} c^{2} - a b c d\right )} \sqrt {d x^{3} + c}\right )}}{3 \, {\left (b^{3} c^{3} d - 2 \, a b^{2} c^{2} d^{2} + a^{2} b c d^{3} + {\left (b^{3} c^{2} d^{2} - 2 \, a b^{2} c d^{3} + a^{2} b d^{4}\right )} x^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

[-1/3*((a*d^2*x^3 + a*c*d)*sqrt(b^2*c - a*b*d)*log((b*d*x^3 + 2*b*c - a*d - 2*sqrt(d*x^3 + c)*sqrt(b^2*c - a*b
*d))/(b*x^3 + a)) + 2*(b^2*c^2 - a*b*c*d)*sqrt(d*x^3 + c))/(b^3*c^3*d - 2*a*b^2*c^2*d^2 + a^2*b*c*d^3 + (b^3*c
^2*d^2 - 2*a*b^2*c*d^3 + a^2*b*d^4)*x^3), -2/3*((a*d^2*x^3 + a*c*d)*sqrt(-b^2*c + a*b*d)*arctan(sqrt(d*x^3 + c
)*sqrt(-b^2*c + a*b*d)/(b*d*x^3 + b*c)) + (b^2*c^2 - a*b*c*d)*sqrt(d*x^3 + c))/(b^3*c^3*d - 2*a*b^2*c^2*d^2 +
a^2*b*c*d^3 + (b^3*c^2*d^2 - 2*a*b^2*c*d^3 + a^2*b*d^4)*x^3)]

________________________________________________________________________________________

giac [A]  time = 0.19, size = 78, normalized size = 0.95 \begin {gather*} -\frac {2 \, {\left (\frac {a d \arctan \left (\frac {\sqrt {d x^{3} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{\sqrt {-b^{2} c + a b d} {\left (b c - a d\right )}} + \frac {c}{\sqrt {d x^{3} + c} {\left (b c - a d\right )}}\right )}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

-2/3*(a*d*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*(b*c - a*d)) + c/(sqrt(d*x^3 +
c)*(b*c - a*d)))/d

________________________________________________________________________________________

maple [C]  time = 0.27, size = 487, normalized size = 5.94 \begin {gather*} -\frac {\left (-\frac {i b \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {\left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (2 \RootOf \left (\textit {\_Z}^{3} b +a \right )^{2} d^{2}+i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (\textit {\_Z}^{3} b +a \right ) d -\left (-c \,d^{2}\right )^{\frac {1}{3}} \RootOf \left (\textit {\_Z}^{3} b +a \right ) d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}-\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {\left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (\textit {\_Z}^{3} b +a \right )^{2} d +i \sqrt {3}\, c d -3 c d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \RootOf \left (\textit {\_Z}^{3} b +a \right )-3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \RootOf \left (\textit {\_Z}^{3} b +a \right )\right ) b}{2 \left (a d -b c \right ) d}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{3 d^{2} \left (-a d +b c \right ) \left (a d -b c \right ) \sqrt {d \,x^{3}+c}}-\frac {2}{3 \left (a d -b c \right ) \sqrt {\left (x^{3}+\frac {c}{d}\right ) d}}\right ) a}{b}-\frac {2}{3 \sqrt {d \,x^{3}+c}\, b d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(b*x^3+a)/(d*x^3+c)^(3/2),x)

[Out]

-2/3/b/d/(d*x^3+c)^(1/2)-a/b*(-2/3/(a*d-b*c)/((x^3+c/d)*d)^(1/2)-1/3*I*b/d^2*2^(1/2)*sum(1/(-a*d+b*c)/(a*d-b*c
)*(-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2
)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^
2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2
)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/
2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),1/2*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(
1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/(a*d-b*c)*b/d,(I*3^(1/2)*(-c*d^2)^(1/3
)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*b+a)))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c positive or negative?

________________________________________________________________________________________

mupad [B]  time = 5.99, size = 94, normalized size = 1.15 \begin {gather*} \frac {2\,c}{3\,d\,\sqrt {d\,x^3+c}\,\left (a\,d-b\,c\right )}+\frac {a\,\ln \left (\frac {2\,b\,c-a\,d+b\,d\,x^3+\sqrt {b}\,\sqrt {d\,x^3+c}\,\sqrt {a\,d-b\,c}\,2{}\mathrm {i}}{b\,x^3+a}\right )\,1{}\mathrm {i}}{3\,\sqrt {b}\,{\left (a\,d-b\,c\right )}^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/((a + b*x^3)*(c + d*x^3)^(3/2)),x)

[Out]

(2*c)/(3*d*(c + d*x^3)^(1/2)*(a*d - b*c)) + (a*log((2*b*c - a*d + b^(1/2)*(c + d*x^3)^(1/2)*(a*d - b*c)^(1/2)*
2i + b*d*x^3)/(a + b*x^3))*1i)/(3*b^(1/2)*(a*d - b*c)^(3/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{5}}{\left (a + b x^{3}\right ) \left (c + d x^{3}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(b*x**3+a)/(d*x**3+c)**(3/2),x)

[Out]

Integral(x**5/((a + b*x**3)*(c + d*x**3)**(3/2)), x)

________________________________________________________________________________________